3.229 \(\int (g x)^m (d^2-e^2 x^2)^{5/2} \, dx\)

Optimal. Leaf size=80 \[ \frac{d^4 \sqrt{d^2-e^2 x^2} (g x)^{m+1} \, _2F_1\left (-\frac{5}{2},\frac{m+1}{2};\frac{m+3}{2};\frac{e^2 x^2}{d^2}\right )}{g (m+1) \sqrt{1-\frac{e^2 x^2}{d^2}}} \]

[Out]

(d^4*(g*x)^(1 + m)*Sqrt[d^2 - e^2*x^2]*Hypergeometric2F1[-5/2, (1 + m)/2, (3 + m)/2, (e^2*x^2)/d^2])/(g*(1 + m
)*Sqrt[1 - (e^2*x^2)/d^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0248633, antiderivative size = 80, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {365, 364} \[ \frac{d^4 \sqrt{d^2-e^2 x^2} (g x)^{m+1} \, _2F_1\left (-\frac{5}{2},\frac{m+1}{2};\frac{m+3}{2};\frac{e^2 x^2}{d^2}\right )}{g (m+1) \sqrt{1-\frac{e^2 x^2}{d^2}}} \]

Antiderivative was successfully verified.

[In]

Int[(g*x)^m*(d^2 - e^2*x^2)^(5/2),x]

[Out]

(d^4*(g*x)^(1 + m)*Sqrt[d^2 - e^2*x^2]*Hypergeometric2F1[-5/2, (1 + m)/2, (3 + m)/2, (e^2*x^2)/d^2])/(g*(1 + m
)*Sqrt[1 - (e^2*x^2)/d^2])

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int (g x)^m \left (d^2-e^2 x^2\right )^{5/2} \, dx &=\frac{\left (d^4 \sqrt{d^2-e^2 x^2}\right ) \int (g x)^m \left (1-\frac{e^2 x^2}{d^2}\right )^{5/2} \, dx}{\sqrt{1-\frac{e^2 x^2}{d^2}}}\\ &=\frac{d^4 (g x)^{1+m} \sqrt{d^2-e^2 x^2} \, _2F_1\left (-\frac{5}{2},\frac{1+m}{2};\frac{3+m}{2};\frac{e^2 x^2}{d^2}\right )}{g (1+m) \sqrt{1-\frac{e^2 x^2}{d^2}}}\\ \end{align*}

Mathematica [A]  time = 0.0192638, size = 78, normalized size = 0.98 \[ \frac{d^4 x \sqrt{d^2-e^2 x^2} (g x)^m \, _2F_1\left (-\frac{5}{2},\frac{m+1}{2};\frac{m+1}{2}+1;\frac{e^2 x^2}{d^2}\right )}{(m+1) \sqrt{1-\frac{e^2 x^2}{d^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(g*x)^m*(d^2 - e^2*x^2)^(5/2),x]

[Out]

(d^4*x*(g*x)^m*Sqrt[d^2 - e^2*x^2]*Hypergeometric2F1[-5/2, (1 + m)/2, 1 + (1 + m)/2, (e^2*x^2)/d^2])/((1 + m)*
Sqrt[1 - (e^2*x^2)/d^2])

________________________________________________________________________________________

Maple [F]  time = 0.365, size = 0, normalized size = 0. \begin{align*} \int \left ( gx \right ) ^{m} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x)^m*(-e^2*x^2+d^2)^(5/2),x)

[Out]

int((g*x)^m*(-e^2*x^2+d^2)^(5/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{5}{2}} \left (g x\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(-e^2*x^2+d^2)^(5/2),x, algorithm="maxima")

[Out]

integrate((-e^2*x^2 + d^2)^(5/2)*(g*x)^m, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (e^{4} x^{4} - 2 \, d^{2} e^{2} x^{2} + d^{4}\right )} \sqrt{-e^{2} x^{2} + d^{2}} \left (g x\right )^{m}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(-e^2*x^2+d^2)^(5/2),x, algorithm="fricas")

[Out]

integral((e^4*x^4 - 2*d^2*e^2*x^2 + d^4)*sqrt(-e^2*x^2 + d^2)*(g*x)^m, x)

________________________________________________________________________________________

Sympy [C]  time = 47.7421, size = 61, normalized size = 0.76 \begin{align*} \frac{d^{5} g^{m} x x^{m} \Gamma \left (\frac{m}{2} + \frac{1}{2}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{5}{2}, \frac{m}{2} + \frac{1}{2} \\ \frac{m}{2} + \frac{3}{2} \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{2 \Gamma \left (\frac{m}{2} + \frac{3}{2}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)**m*(-e**2*x**2+d**2)**(5/2),x)

[Out]

d**5*g**m*x*x**m*gamma(m/2 + 1/2)*hyper((-5/2, m/2 + 1/2), (m/2 + 3/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)/(2*
gamma(m/2 + 3/2))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac{5}{2}} \left (g x\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(-e^2*x^2+d^2)^(5/2),x, algorithm="giac")

[Out]

integrate((-e^2*x^2 + d^2)^(5/2)*(g*x)^m, x)